Dcp2 Decaps m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent.

نویسندگان

  • Leah S Cohen
  • Claudette Mikhli
  • Xinfu Jiao
  • Megerditch Kiledjian
  • Glenna Kunkel
  • Richard E Davis
چکیده

Hydrolysis of the mRNA cap plays a pivotal role in initiating and completing mRNA turnover. In nematodes, mRNA metabolism and cap-interacting proteins must deal with two populations of mRNAs, spliced leader trans-spliced mRNAs with a trimethylguanosine cap and non-trans-spliced mRNAs with a monomethylguanosine cap. We describe here the characterization of nematode Dcp1 and Dcp2 proteins. Dcp1 was inactive in vitro on both free cap and capped RNA and did not significantly enhance Dcp2 activity. Nematode Dcp2 is an RNA-decapping protein that does not bind cap and is not inhibited by cap analogs but is effectively inhibited by competing RNA irrespective of RNA sequence and cap. Nematode Dcp2 activity is influenced by both 5' end sequence and its context. The trans-spliced leader sequence on mRNAs reduces Dcp2 activity approximately 10-fold, suggesting that 5'-to-3' turnover of trans-spliced RNAs may be regulated. Nematode Dcp2 decaps both m(7)GpppG- and m(2,2,7)GpppG-capped RNAs. Surprisingly, both budding yeast and human Dcp2 are also active on m(2,2,7)GpppG-capped RNAs. Overall, the data suggest that Dcp2 activity can be influenced by both sequence and context and that Dcp2 may contribute to gene regulation in multiple RNA pathways, including monomethyl- and trimethylguanosine-capped RNAs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dcp2 Decaps mGpppN-Capped RNAs, and Its Activity Is Sequence and Context Dependent†

Hydrolysis of the mRNA cap plays a pivotal role in initiating and completing mRNA turnover. In nematodes, mRNA metabolism and cap-interacting proteins must deal with two populations of mRNAs, spliced leader trans-spliced mRNAs with a trimethylguanosine cap and non-trans-spliced mRNAs with a monomethylguanosine cap. We describe here the characterization of nematode Dcp1 and Dcp2 proteins. Dcp1 w...

متن کامل

Multiple Nudix family proteins possess mRNA decapping activity.

RNA decapping is an important contributor to gene expression and is a critical determinant of mRNA decay. The recent demonstration that mammalian cells harbor at least two distinct decapping enzymes that preferentially modulate a subset of mRNAs raises the intriguing possibility of whether additional decapping enzymes exist. Because both known decapping proteins, Dcp2 and Nudt16, are members of...

متن کامل

How to activate a gene: decap its associated noncoding RNA.

Capped and polyadenylated long noncoding RNAs (lncRNAs) are shown to be degraded by a DCP2-mediated turnover mechanism by Geisler et al. (2012); this provides a new level of regulatory control for inducible genes by lncRNAs.

متن کامل

Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development.

mRNA turnover in eukaryotes involves the removal of m7GDP from the 5' end. This decapping reaction is mediated by a protein complex well characterized in yeast and human but not in plants. The function of the decapping complex in the development of multicellular organisms is also poorly understood. Here, we show that Arabidopsis thaliana DCP2 can generate from capped mRNAs, m7GDP, and 5'-phosph...

متن کامل

Characterization of a second vaccinia virus mRNA-decapping enzyme conserved in poxviruses.

Vaccinia virus (VACV) encodes enzymes that cap the 5' end of viral mRNAs, which enhances their stability and translation. Nevertheless, recent studies demonstrated that the VACV D10 protein (VACV-WR_115) decaps mRNA, an enzymatic activity not previously shown to be encoded by a virus. The decapping activity of D10 is dependent on a Nudix hydrolase motif that is also present in the VACV D9 prote...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 25 20  شماره 

صفحات  -

تاریخ انتشار 2005